The equivalence between robust worst-case optimisation andvariance-bas的简体中文翻译

The equivalence between robust wors

The equivalence between robust worst-case optimisation andvariance-based optimisation has been mathematically derivedunder the assumption that a linearisation is applied and the normsare chosen adequately. Both approaches have been numericallycompared using a simple benchmark problem, i.e. the reduction ofthe size of the PMs in a PMSM while maintaining theelectromotive force. It is found that robust optimisation in thestochastic formulation gives less pessimistic results, since theworst-case might be unlikely to happen. However, thecomputational time is significantly increased whereas theimplementation effort reduced since no (further) derivatives areneeded. The implementation of an affine decomposition facilitatesthe calculation of the derivatives and thus an efficient gradientbased optimisation procedure was obtained. The use of MOR hasbeen shown to be beneficial when a lot of finite elementevaluations are needed, which is the case for Monte Carlo samplingand when using the particle swarm optimisation algorithm.The robustness of the found optima was tested by determiningthe failure rates. It was found the worst-case optimisation
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
在假设应用了线性化并且适当选择了范<br>数<br>的假设下,数学上得出了鲁棒最坏情况优化和基于方差的优化之间的等价关系<br>。两种方法都<br>使用简单的基准问题进行了数值比较,即<br>在保持<br>电动势的同时减小了PMSM中PM的尺寸。发现在<br>随机公式中进行鲁棒的优化<br>不会产生悲观的结果,因为最坏的情况可能不太可能发生。但是,由于没有(更多)导数,因此<br>计算时间显着增加,而<br>实现工作却减少了<br>需要。仿射分解的实现有利于<br>导数的计算,从而获得了基于梯度的高效优化程序。<br>当需要进行大量有限元<br>评估<br>时(例如蒙特卡洛采样和使用粒子群优化算法时),MOR的使用已被证明是有益的。<br>通过确定<br>故障率来测试发现的最优值的鲁棒性。发现最坏情况的优化
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
The equivalence between robust worst-case optimisation and<br>variance-based optimisation has been mathematically derived<br>under the assumption that a linearisation is applied and the norms<br>are chosen adequately. Both approaches have been numerically<br>compared using a simple benchmark problem, i.e. the reduction of<br>the size of the PMs in a PMSM while maintaining the<br>electromotive force. It is found that robust optimisation in the<br>stochastic formulation gives less pessimistic results, since the<br>worst-case might be unlikely to happen. However, the<br>computational time is significantly increased whereas the<br>implementation effort reduced since no (further) derivatives are<br>needed. The implementation of an affine decomposition facilitates<br>the calculation of the derivatives and thus an efficient gradientbased optimisation procedure was obtained. The use of MOR has<br>been shown to be beneficial when a lot of finite element<br>evaluations are needed, which is the case for Monte Carlo sampling<br>and when using the particle swarm optimisation algorithm.<br>The robustness of the found optima was tested by determining<br>the failure rates. It was found the worst-case optimisation
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
鲁棒最坏情况优化与<br>基于方差的优化已从数学上推导出来<br>假设采用线性化和规范<br>被充分选择。两种方法都是用数值方法<br>使用一个简单的基准问题进行比较,即<br>PMSM中PMs的大小,同时保持<br>电动势。我们发现<br>随机公式给出的结果不那么悲观,因为<br>最坏的情况可能不太可能发生。然而<br>计算时间显著增加,而<br>由于没有(进一步的)衍生产品<br>需要。仿射分解的实现有助于<br>通过对导数的计算,得到了一种基于梯度的优化方法。MOR的使用<br>当很多有限元<br>需要进行评估,这是蒙特卡罗抽样的情况<br>当使用粒子群优化算法时。<br>通过确定<br>故障率。它被认为是最坏情况下的优化<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: